Paolo Allia

DISAT – Politecnico di Torino Associate, INRiM - Torino

Exercises, Examples, Insights

Show that for a single electron in Coulomb potential (hydrogen atom) the following relation holds:

$$\mathbf{\mu} = \mathbf{\mu}_{k} + \mathbf{\mu}_{s} = -\mu_{B}(\mathbf{\ell} + 2\mathbf{s}) = -g\mu_{B}\mathbf{j}$$
$$\mathbf{j} = \mathbf{\ell} + \mathbf{s}$$

In the hydrogen atom one expects to deal with the following four angular-momentum observables: ℓ^2 , \mathbf{s}^2 , ℓ_z , s_z .

However, the quantum vectors ℓ e s are coupled by the spin-orbit interaction which can be cast in the form

$$\mathcal{H}_{SO} = \lambda \, \ell \cdot \mathbf{s}$$

$$\lambda = \frac{e^2}{2m_e^2 c^2 \bar{r}^3}$$
Mean radius of the orbit

As a consequence, $\ell_{z_{,}} s_{z}$ are no longer «good» quantum observables: the four diagonal operators become ℓ^{2} , \mathbf{s}^{2} , \mathbf{j}^{2} , \mathbf{j}_{z} , where \mathbf{j} is the **total** angular momentum vector:

$$j = (\ell + s)$$

The eigenvalues of $\mathbf{j^2}$, $\mathbf{j_z}$ are j(j+1) and $m_{j,z}$.

Both the magnitude of j and its projection along an arbitrary axis are «good quantum numbers»: the vector j of an unperturbed atom can be thought of as fixed in space, invariant.

The magnetic moment μ is proportional to $\ell + 2\mathbf{s}$, not to \mathbf{j}

However, its square modulus can be written as

$$\boldsymbol{\mu}^2 = \mu_B^2 (\boldsymbol{\ell} + 2\mathbf{s})^2 = \mu_B^2 (\boldsymbol{\ell}^2 + 4\mathbf{s}^2 + 4\boldsymbol{\ell} \cdot \mathbf{s})$$

which is diagonal in the new basis ($\ell \cdot s$ is diagonal too).

We now show that it is possible to write:

$$\boldsymbol{\mu} = -g_{j}\mu_{B}\mathbf{j}$$

where g_j (a dimensionless constant) is the *Landé's* factor generally taking the value:

$$g_{j} = \frac{3j(j+1) + s(s+1) - \ell(\ell+1)}{2j(j+1)}$$

For a single electron $s = \frac{1}{2}$, so:

$$g_{j} = \frac{3j(j+1) + \frac{3}{4} - \ell(\ell+1)}{2j(j+1)}$$

We start by comparing the two expressions of the μ operator:

$$\mathbf{\mu} = -g_{_J}\mu_{_B}\mathbf{j}$$

$$\mathbf{\mu} = -\mu_{_B}(\ell + 2\mathbf{s})$$
actual definition
$$\mathbf{g}_{_J}\mathbf{j} = (\ell + 2\mathbf{s})$$

The last expression transforms into:

$$g_J \mathbf{j} = (\ell + 2\mathbf{s}) = \frac{3}{2}(\ell + \mathbf{s}) - \frac{1}{2}(\ell - \mathbf{s}) = \frac{3}{2}\mathbf{j} - \frac{1}{2}(\ell - \mathbf{s})$$

Multiplying by **j** one easily finds:

$$g_J \mathbf{j}^2 = \frac{3}{2} \mathbf{j}^2 - \frac{1}{2} (\ell^2 - \mathbf{s}^2)$$

which is again a diagonal operator with eigenvalues:

$$g_J j(j+1) = \frac{3}{2} j(j+1) - \frac{1}{2} (l(l+1) - s(s+1))$$

Therefore:

$$g_J = \frac{3j(j+1) - l(l+1) + s(s+1)}{2j(j+1)}$$

The Dy³⁺ ion has 9 electrons in the 4f shell (able to host up to 7+7= 14 electrons). Find the effective magnetic moment $\mu_{eff} = g_I \sqrt{J(J+1)} \mu_B$.

According to Hund's rules:

$$S = \frac{1}{2} + \frac{1}{2} + \dots - \frac{1}{2} - \frac{1}{2} = \frac{7}{2} - \frac{2}{2} = \frac{5}{2}$$

$$L = 3 + 2 + 1 \dots - 2 - 3 + 3 + 2 = 0 + 5 = 5$$

$$J = L + S = \frac{5}{2} + 5 = \frac{15}{2}$$

$$g_{\frac{15}{2}} = \frac{3\frac{15}{2}\left(\frac{15}{2}+1\right) + \frac{5}{2}\left(\frac{5}{2}+1\right) - 5(5+1)}{2\frac{15}{2}\left(\frac{15}{2}+1\right)} = \frac{\frac{45}{2}\frac{17}{2} + \frac{5}{2}\frac{7}{2} - 30}{\frac{30}{2}\frac{17}{2}} = \frac{765 + 35 - 120}{510} = \frac{680}{510} = \frac{4}{3}$$

Therefore,
$$\mu_{eff} = \frac{4}{3} \sqrt{\frac{15}{2} (\frac{15}{2} + 1)} \mu_B = \frac{4}{3} \sqrt{\frac{255}{4}} = \frac{2}{3} \times 15.97 \mu_B = 10.65 \mu_B$$

The experimental value of $\mu_{\rm eff}$ for Dy³⁺ is 10.60 $\mu_{\rm B}$

Insight nr. 1

Multi-electron atoms/ions in the Russell-Saunders coupling scheme

An example & an important consequence

Energy difference between ground level and 1st excited level is proportional to spin-orbit interaction and is $>> k_BT$ around room temperature

A magnetic field applied to the system removes the degeneracy of all levels with definite J because of the Zeeman interaction

Example & important consequence

Only ground level plays a role in magnetism at thermodynamic equlibrium

Energy difference between ground level and 1st excited level is proportional to spin-orbit interaction and is $>> k_BT$ at room temperature

Example & important consequence

Only ground level plays a role in magnetism at thermodynamic equlibrium

Energy difference between ground level and 1st excited level is proportional to spin-orbit interaction and is $>> k_BT$ at room temperature

A paramagnetic system comprised of identical magnetic ions has a nonzero equlibrium magnetization M_0 when a large field H_0 is applied at RT. The field is instantaneously removed at time t=0.

- Which is the new equilibrium magnetization of the system?
- ➤ Which is the characteristic time needed by the system to reach the new equilibrium state?
- The new equilibrium magnetization is M=0
- The characteristic time is basically the spin-lattice relaxation time (10^{-9} to 10^{-4} s). Relaxation time decreases with increasing T.

Find the easy and hard anisotropy axes in cubic symmetry for $K_1>0$ and $K_1<0$. Neglect higher-order terms in the anisotropy development.

Cubic anisotropy: $E_A = K_0 + K_1(\alpha_1^2 \alpha_2^2 + \alpha_2^2 \alpha_3^2 + \alpha_3^2 \alpha_1^2)$

$$K_1 > 0$$

Easy axes: Minimum of E_A (= K_0) when any $\alpha_i = 1$ (i=1-3) \rightarrow the other two direction cosines must be zero \rightarrow edge of cube

Hard axes: Maximum of E_A (= $K_0+K_1/3$) when $\alpha_1=\alpha_2=\alpha_3=\frac{1}{\sqrt{3}}$ \rightarrow diagonal of the cube

$$K_1 < 0$$

Hard axes: Maximum of E_A (= K_0) when any $\alpha_i = 1$ (i=1-3) \rightarrow the other two direction cosines must be zero \rightarrow edge of cube

Easy axes: Minimum of E_A (= K_0 - K_1 /3) when $\alpha_1 = \alpha_2 = \alpha_3 = \frac{1}{\sqrt{3}} \rightarrow$ diagonal of the cube

Show that M_s is always aligned along the long axis of an ellipsoid of revolution by shape anisotropy

Evaluate shape anisotropy for important limiting cases

Shape anisotropy of the ellipsoid of revolution [$N_x=N_y=N_\perp$ $\left(=2\pi-\frac{N_z}{2}\right)$]

$$\varepsilon_d = const. + \frac{M_S^2}{8\pi} (N_z - N_\perp) cos^2 \theta$$

Prolate ellipsoid (elongated along the z axis): $N_{\perp} > N_z$ \rightarrow minimum of $\epsilon_{\rm d}$ for θ = 0, π (=z axis)

Oblate ellipsoid (a disk in the x-y plane): $N_{\perp} < N_z$ \rightarrow minimum of $\epsilon_{\rm d}$ for $\theta = \pi/2$ (= in the plane of the disk)

Interesting limiting cases

Spherical sample:
$$N_x=N_y=N_\perp=N_z=\frac{4\pi}{3}$$
 \rightarrow no shape anisotropy

Thin films: one dimension (z) is much smaller than the other two dimensions; according to the general rule $N_z >> N_x, N_v$, and $\rightarrow N_z \cong 4\pi$, $N_x \cong N_v \cong 0$.

$$\varepsilon_d = const. + \frac{M_s^2}{8\pi} 4\pi cos^2 \theta = const. + \frac{M_s^2}{2} cos^2 \theta$$

The energy is minimized for $\theta = \pi/2$: the magnetization usually lies in the film's plane at equilibrium. A way to get a *perpendicular* equilibrium magnetization in a film is to use a material with an extremely high crystal anisotropy and easy axis along z.

Microwires:
$$N_z \cong 0$$
, $N_x \cong N_y \cong 2\pi$. $\varepsilon_d = const. -\frac{M_s^2}{4} cos^2 \theta$ $M_s \uparrow 0$

The magnetization is spontaneously directed along the wire axis, θ =0, π (even if the wire is bent).

Insight nr. 2

The typical DW thickness d and the accumulated magnetic energy per unit of DW surface E_{DW} can be estimated making use of simple models.

 E_{DW} is given in erg/cm² and is assimilated to a *surface tension*.

Example: Co

•d ≅ 24 nm

•E_{DW} ≅ 15 erg/cm²

(surface tension of water at room temperature ≈ 70 erg/cm²)

Example: Fe

•d ≅ 64 nm

•E_{DW} ≅ 4 erg/cm²

Insight nr. 3

Typical magnetic domain width *D* in Co, Fe according to simpl models.

DWs are genuine 2D structures if compared to the typical domain width.

N: number of DWs

Example: Co

•D = 1×10^{-2} cm (100 μ m)

 $\cdot d = 24 \text{ nm}$

Example: Fe

•D = 7×10^{-3} cm (70 μ m)

 $\cdot d = 64 \text{ nm}$

Show that the energy loss in cyclic magnetization of a ferromagnetic material is given by the hysteresis loop's area

Consider a toroidal core with area A and length I.

Energy loss over a period T:

$$E = \int_{0}^{T} i(t)V(t)dt$$

where i(t) is the eddy current flowing in the toroid and V is the electromotive force The quantities in the integrand function are written as:

$$i(t)=\oint H(t)ds=H(t)l$$
 Ampere's circuital law
$$V(t)=-\alpha\frac{dB}{dt}=-4\pi\alpha\frac{dM}{dt} \qquad (\alpha=constant)$$
 Faraday's law

so the energy loss is:

$$E = \int_0^T i(t)V(t)dt = \alpha l \int_0^T H(t)\frac{dB}{dt}dt = \alpha l \oint HdB = 4\pi\alpha l \oint HdM$$

When the loop is performed at a higher frequency, dM/dt and the electromotive force increase, so does the dissipated energy (the loop becomes wider).

area of the

M(H) loop

Most of the energy loss depends on the **highly irregular motion** of DWs in the multi-valley energy potential landscape, occurring by a sequence of quick jumps forward followed by stasis.

This increases much the losses (dM/dt is very high during a single quick jump)

Note that the more conductive the material is, the higher its losses.

Suggested readings (all available online)

General Magnetism

J.M.D. Coey: <u>Magnetism and Magnetic Materials</u>, Cambridge University Press 2009 Accurate and updated; SI units

B.D. Cullity and C.D.Graham: <u>Introduction to Magnetic Materials</u>, Wiley 2009 Simple but exhaustive; gaussian units

J.B. Goodenough: <u>Magnetism and the chemical bond</u>, Wiley 1963 An old treatise; detailed depiction of quantum magnetism; gaussian units

Mostly Ferromagnetism

Soshin Chikazumi: <u>Physics of Ferromagnetism</u>, Oxford Science Publications 1997 In-depth analysis of phenomena in ferromagnetic materials; SI units

Magnetic Hysteresis

G. Bertotti: <u>Hysteresis in Magnetsim for Physicists</u>, Materials Scientists and Engineers, Academic Press 1998 Comprehensive exposition of stochastic magnetization processes; SI units

Magnetic Nanoparticles

Chris Binns (editor): *Nanomagnetism: Fundamentals and Applications*, Elsevier 2014 *Title says it all; SI units*