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Spin-accumulation 

Co/cu interface: 
β = 0.46 > 0 
ρ+ < ρ- 
 
In the bulk of Co 
J+ > J- 
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If divJ>0 There’s an electron accumulation 
in the green zone: non stationary case! 

To find a stationary state the excess of spin up electrons entering from 
the right side must undergo a spin flip towards the spin down channel. 
This corresponds to the spin flip term added to the Boltzmann equation: 
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Time relaxation approximation 
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Scattering without spin flip 
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Spin diffusion length 
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The scattering probabilities are additive 

Ds : diffusion constant for channel s 



Macroscopic transport equations 

If λs <<lsf  the Boltzmann equation leads to: 

(1) 

(2) Ohm�s law 

Change in Js due to spin flip 

Meaning of eq. (1): 
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Spin flip processes balance the div J  

Free electrons approx. 

Electrochemical potential for spin s 

T. Valet, A. Fert, Phys. Rev. B 1993, 48, 7099 



To solve the transport equations: µµµ Δ±=±

The gradient of part of the chemical potential independent on the spin is the 
equivalent of an electric field: 

The transport equations become: 

(3) 

(4) 

Put (4) in (3): 
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By subtracting the two equations: 
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Charge conservation: 
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We must solve these equations :  

The solution in a homogeneous medium is:  

The volume resistivity can be written as: 
FM 

Not FM (N)  



Isolated interface between two FM materials  

(A) (B) 

)1(2 * βρρ ±=± F )1(2 * βρρ F=±

MA MB 

)0()0( −±+± === zz µµ

)0()0( −±+± === zJzJ
4 variables:  K1A, K2A, K1B, K3B 

Electric field far away from 
the interface: 

Solution in (A) In (B) we must change all signs. 
An el. + is minority An el + is majority 



The AP gives rise to an additional 
voltage drop with respect to that due 
to E0: 

The corresponding interface 
resistance is  (per unit surface): 

β>0 means r↑ < r↓ J↑ > J↓ 

maj 

min 
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Tunneling and WKB 
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for large values of k’d 
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Consider a non rectangular barrier: 

The first term dominates 

Approximate the barrier with the series of rectangular barriers 
Suppose that transmission coefficients are multiplicative. 
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I-V characteristic of a tunneling junction 

Sum over transversal k, D(E) is the density of states at the energy  
E (with respect to the Fermi level) and f(E) is the Fermi 
distribution . The matrix element is proportional to|T(E)|2 
calculated with the WKB approximation. 
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J. G. Simmons, J. Appl. Phys. 34, 1793 (1963) 

∗= cmh
A 24π

h
eJ
π20 =

d in Angstroms, Φ in V A=1.025 eV-1/2 Å-1 J0=6.2 x 1010 eV-1 Å2 

In this wayJ is expressed in A/cm2 
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For small values of the applied voltage: 

3VVJ βα +≈ The conductance G = dI/dV has a parabolic shape 

The current depends exponentially on: 
•  the barrier thickness 
•  the square root of the barrier height 

Adapted from: A Barry et al. A CrO2-based magnetic tunnel junction. J. Phys. Condens. Matter 12, L173 (2000). 



Spin Dependent Tunneling 

eV eV

Rp Rap

M2 M2M1 M1

<

FM1
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Jullière model for TMR (1975) 

Fe/GeOx/Co 

Assumptions: 
•  Spin conservation during tunneling 
•  Constant transmission coefficients, 
independent on magnetization and energy 
•  Small applied voltage 
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It works, especially in case of Al2O3 barriers. 
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Fe/MgO/Fe: Coherent tunneling  

S. Yuasa et al, Nature Materials, 3 868 (2004) 

TMR (RT) MTJ conventional (Al2O3) ~ 70% 

TMR (RT) MTJ Fe/MgO/Fe  ~ 800% (theoretical value = 1000%) 
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majority-spin bands 
minority-spin bands 

Fe 

S. Yuasa et al, APL 89 042505 2006 W. H. Butler et al, PRB 63 054416 (2001) 

Symmetry based spin filtering 

•  coupling of electronic states in the collector 
and emitter through the MgO barrier              
(FM emitter, FM collector) 

•  different attenuation (k) in the barrier 
depending on the symmetry of states 

C. Tiusan et al, J.Phys.:Cond. Matter 19 165201 2007 

Coherent tunneling 
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TMR measurements 
Basic principle 



A state of the art TMR sensor 

Stack 

Fabrication 

Magnetoresistive behaviour 
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Intrinsic spin–orbit interaction in an atom 

A negatively charged electron in an atom feels the electric field due to the positively 
charged nucleus. 

Thomas (Nature in 1926) had pointed out that the Lorentz transformation that we normally 
use to connect the electron's rest frame to the laboratory frame is inexact. If there is a 
component of the electric field in a direction perpendicular to the instantaneous velocity, the 
electron will be accelerating perpendicular to the velocity.  
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The relativistic Zeeman-like interaction energy is: 
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µe = −g0µB


S Orbital motion 
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e : modulus of the electron charge 



Erel = − −g0µB
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Rashba in 2DEG  

The Rashba Hamiltonian in absence of a magnetic field is: 

HR =

ηR (
r ) ⋅
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In the “variable separation approximation”, assuming there is no dependence on z and 
neglecting energy contributions arising from quantum confinement in z: 
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Rashba parameters 

E- E+ 

for ky>0 E− = −αR ky +
2ky
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The minimum is found for k0 such as 

dE−
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m
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The k-splitting is 2k0 ! 

The Rashba energy ER=|E-(k0)| 

ER = E−(k0 ) =
mαR
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Exercise: Demonstrate that S and k are perpendicular 
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This is the sense of circulation in the high energy band.  
(inner circle in the isoenergy cut)  



Spin texture in Rashba bands 

unperturbed Zeeman 
splitting 

Rashba 
splitting 



Spin FET (Datta & Das 1990) 
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For positive VG, electrons moving along x (kx) 


BR = −

2αR

gµB

ŷ× k̂

BR 

kx 

dS
dt

=Ω×S = gµBBR


×S

Particle viewpoint 

A spin injected at the source with the spin 
along x will precess around BR 

We use the spin-independent Rashba field 

(2ν+1)π, OFF 

2π, ON 
Independent on v, stable againts collisions 



Spinors viewpoint 

Electrons at the source are injected with the spin along x and must travel along x: 

k1 k2 
kx 

   

The eigenstates of the Rashba Hamiltonian are: 
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' lower band, a spin injected at E* has K2 

upper band, a spin injected at E* has K1 
 

E+
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2k1

2

2m
+ηk1 for Ψ+

E−
* =
2k2

2

2m
−ηk2 for Ψ−

HR =ηŷ ⋅

σ ×

k( ) =ηŷ ⋅

x̂ ŷ k̂
σ x σ y σ z

kx 0 0

=ηkxσ z
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η(r ) =αR
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BR 

kx 

Whose eigenvalues are   ±ηkx for Ψ±

The total energy eigenvalues are: 

E+
* = E−

*

k2 − k1=
2mη
2

Φ = k2 − k1( )L= 2mη
2

L

As in the previous slide because  
η = a46ε



At the drain: 

Electrons in the drain have spinors 

The transmission is thus: 

And the transmission probability: 

Φ = k2 − k1( )L= 2mη
2

L

Ψdrain =
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e−i k2−k1( )L
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Φ=(2n+1)π    LOW transmission; OFF state 



Pure spin currents (PSC) 



CoFeB with perpendicular magnetic anisotropy on BaTiO3 (unpublished) 

Because of spin-dependent band structure or spin-dependent scattering events due to spin-
orbit coupling, electrons whose spins are polarized in the +z-direction, are scattered to one 
edge of the sample and electrons whose spins are polarized in the −z-direction are scattered 
to the other edge. 
In a ferromagnetic sample with non-zero magnetization there is an unbalance of spin up and 
down electrons: thus a charge and spin unbalance is created at the two edges of the samples 
in the y direction. 
We expect both charge currents and spin currents! 

Anomalous Hall effect 

R0: ordinary Hall coefficient 
RS: anomalous Hall coefficient ρH = R0B+ RSM



Spin-Hall effect (SHE) 

If a current flows in the x-direction within a paramagnetic semiconductor, due to spin 
dependent scattering phenomena (e.g. SO) as in the case of anomalous Hall effect, spin up 
electrons are deflected to the left and spin down to the right. 
As the sample is not ferromagnetic, there is not net unbalance between spin up and down 
electrons. Thus there is no charge current but a pure spin current (PSC). 

Extrinsic SHE 



For an unpolarized electron beam incident on a SO scattering potential of the form: 

σ, L: electron spin and orbital momentum 
Vs: SO scattering potential 

The scattered beam will have a !
polarization vector:!

Where f (g) is the spin independent 
(dependent) part of the scattering 
amplitude.!

As n is opposite for electrons scattered on the left 
and on the right, there’s a left-right asymmetry to 
the spin polarization of the scattered beam.!

There’s is a fundamental difference with 
respect to ordinary Hall effect:!
the Fermi levels for each spin electrons will 
also be different on both sides of the sample, 
but the difference will be of opposite sign for 
both spins. No net voltage difference.!
 !



No charge current, but pure spin current (PSC)!!
 !
Estimate the associate spin-voltage and spin current 
The scattering processes are the same of the anomalous Hall effect. Imagine now that we 
have only spin up electrons with associated “magnetization”:!

M↑ = n↑µB

V↑
H = j

↑
xL ⋅RSM↑ = j

↑
xL ⋅RSn↑µB

Spin down electrons moving along x will produce an opposite spin voltage, so that the total 
spin voltage is:!

V H = 2 j
↑
xL ⋅RSM↑ = 2 j

↑
xL ⋅RSn↑µB = j xL ⋅RS

n
2
µB

Assuming that the resistivity for the spin current is the same as that for the charge current 
we have for the spin current:!

Js =
VSH
L
σ = j xL ⋅RS
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2
µB

neµ
L

= j xRS
n2

2
eµ

The spin-Hall angle is defined as:!

ϑ SH =
Jspin
Jcharge

= RS
n2

2
eµ


E ⋅

JS = 0 Dissipationless!!!



Inverse spin-Hall effect 

A PSC will flow in the top strip, but the two spin up and spin down charge currents are 
now antiparallel so that the spin-hall voltages add up to produce a net voltage.!

VISHE = 2JSl ⋅RS
n
2
µB = 2l ⋅RS

2 n
2
µB
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where σ is the spin polarization of the 
PSC!


